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We present the results of an extensive computational study in which we show that combining
scoring functions in an intersection-based consensus approach results in an enhancement in
the ability to discriminate between active and inactive enzyme inhibitors. This is illustrated
in the context of docking collections of three-dimensional structures into three different enzymes
of pharmaceutical interest: p38 MAP kinase, inosine monophosphate dehydrogenase, and HIV
protease. An analysis of two different docking methods and thirteen scoring functions provides
insights into which functions perform well, both singly and in combination. Our data shows
that consensus scoring further provides a dramatic reduction in the number of false positives
identified by individual scoring functions, thus leading to a significant enhancement in hit-
rates.

Introduction

Over the past 10 years, the use of various docking
methods has become commonplace to identify leads from
compound collections when structural information of the
target has been determined.1,2 Many of these same
docking algorithms have also been applied toward
structure-based library design in both lead identification
and lead optimization contexts. In addition to the
necessity of possessing the desired target’s three-
dimensional coordinates as well as a docking method,
both structure-based database mining and library de-
sign also require a virtual collection of desired test
compounds and one or more methods to rank these
compounds. The scoring functions used to rank com-
pounds should be able to distinguish active from inactive
compounds independent of the docking method used and
should be comprised of physically intuitive and inter-
pretable terms. However, it does not necessarily follow
that these same scoring functions should be able to
predict binding affinity in statistically rigorous terms
since the functional forms used to describe the chemistry
and physics of ligand binding are notoriously incom-
plete.3 The majority of published scoring functions have
been developed in association with docking methods.
These docking methods have typically been validated
on the basis of their ability to reproduce the geometries
of high-affinity protein-ligand complexes. While this is
a necessary criterion, it does not address one of the
primary uses of a docking program, the identification
of novel micromolar lead compounds. In many cases, the
scoring functions that have evolved with these docking
methods can consistently predict the binding mode of
ligands binding with nanomolar affinity; however, they
perform poorly for predicting lower affinity binders. This
is especially true for attempts to identify low affinity
ligands for systems outside the training sets of some
empirical scoring functions.

In this work, we present an evaluation of two different
docking methods and thirteen different scoring functions
as applied to three current targets of high pharmaceuti-
cal interest. The motivation for this study came from
the observation that we were consistently obtaining
confirmed hit-rates (IC50 < 50 µM) between 2 and 7%
for a variety of enzyme targets, while screening rela-
tively small numbers of compounds (30-400). These
hits, representing multiple compound classes, came
from commercially available compound sources and
were obtained with DOCK 4.0.1 employing several
scoring functions in an approach we will describe as
consensus scoring. We wished to determine whether the
scoring functions we had been using were optimal for
the docking/ lead identification process and whether
scoring function performance was generalizable and
independent of the docking method. Our desire to
optimize performance in this area stems from our
overall screening philosophy in which compounds are
selected by a variety of different methods for directed
screening (e.g., both 2D and 3D similarity, diversity, and
docking).

Database Integrity and Consensus Scoring. We
believe that the consistently better than random con-
firmed hit-rates we had observed can be attributed to
two factors. First, we have been careful to ensure that
any database we were docking had been filtered by
REOS 4 to remove compounds containing functional
groups known to be reactive or resemblant of toxic
entities. We further ensured that all compounds were
within ranges of properties calculated for known drugs
in a manner similar to Lipinski et al.5 These simple
filters serve to reduce the incidence of false positives,
improve the downstream properties of the compounds
(pharmacokinetics, metabolism), and provide “drug-like”
leads from the outset. The second reason we believe we
have obtained our observed hit-rates is due to the way
we apply scoring functions during and after the docking
process. We routinely combine several scoring functions
in an intersection approach toward compound selection.
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Approaches of this type have been have been applied
in the areas of QSAR6 and molecular similarity.7,8 This
consensus scoring approach simply involves scoring
compounds with several methods (typically 2-3) and
taking the intersection of the top N% of each of these
sorted lists. In practice, this is accomplished by use of
a primary scoring function followed by rescoring of the
best configuration (i.e. orientation/conformation) identi-
fied during docking with the other functions. Another
goal of this study was to, therefore, determine, if there
were optimal combinations of functions that could be
identified for use by a consensus approach. We also
wished to determine to what extent the primary func-
tion influenced the overall results.

Docking Methods and Scoring Functions. There
are presently several available docking programs such
as DOCK,9-11 Autodock,12-15 FlexX,16-18 GOLD,19,20 and
Flexdock21 that solve the docking problem and the
conformational flexibility issues in slightly different
ways. For the purposes of this study, we have evaluated
DOCK and a Genetic Algorithm-based docking method
of our own (see Methods section). Although there are
capabilities in DOCK 4.01 to perform flexible docking,
we have chosen to evaluate DOCK in the traditional site
point/internal distance matching paradigm, since this
is the most commonly used docking approach. Multiple
conformers (see Methods section) have been employed
in this study; we4,22 and others23 have found this to be
an efficient way to address the conformational flexibility
issues. In a similar fashion, our GA-based docking
program, GAMBLER, was used simply to orient mul-
tiple conformers (i.e., the GA was not applied to search-
ing torsions).

Thirteen scoring functions are considered in this
study and are loosely grouped into three categories
(Figure 1): empirical functions, molecular mechanics-
based functions, and functions not cleanly fitting into
one of the previous two categories. It is beyond the scope
of this paper to review all of these functions, thus we
will comment only on specific performance as it applies
to this study. Since we did not have access to all of these
programs/algorithms, we implemented the following
functions: Böhm,24 ChemScore,25,26 Piecewise Linear
Potential (PLP),27 FLOG,28 Volume Overlap.29 In every
case, we have attempted to reproduce test cases pre-
sented by the original authors. In some cases, more than
one version of a given algorithm has been published and
we have given the appropriate reference for the version
we used. Additionally, we have employed simplex30

minimizations for the following functions: ChemScore,
PLP, DOCK (energy, chemical, contact) scores, and
FLOG. The MMFF31-33 nonbonded interaction energies
and strain energies involved conjugate gradient mini-
mizations. Details for some of the scoring functions are
provided in the Methods section.

Study Design. Three targets for which the high-
resolution crystallographic structures are known were
used in this study. These include p38 MAP kinase,34

inosine monophosphate dehydrogenase (IMPDH),35,36

and HIV protease.37-39 Although all three of these sites
are reasonably buried, each system represents the
practical complexities encountered in docking calcula-
tions. P38 has been shown to exhibit subtle, yet signifi-
cant rearrangements in the glycine rich loop of the ATP

binding site when binding chemically different inhibitor
classes. IMPDH also exhibits some conformational
mobility in a region of one of the flaps comprising the
active site and also has a cofactor requirement. HIV
protease has a conserved flap water that can be con-
sidered as part of the protein or removed to allow
occupancy from a potential inhibitor atom. Additionally
for HIV protease, the natural ligand is a peptide and
the identification of nonpeptide inhibitors for proteases
has been a challenging problem.

The test compounds for each target came from Vertex
research programs. In each case, high quality experi-
mental inhibition constants have been measured, the
Ki or Ki apparent ranged from low nanomolar to micro-
molar. For each target, the number of test compounds
used in the study was further reduced by applying a
rotatable bond cutoff. This also serves to improve the
chances that we are generating conformers that might
be close to the necessary binding conformation. Table 1
shows the rotatable bond cutoffs employed as well as
the number of unique test compounds and the number
of multiple conformers generated for each compound.
Additionally, 10 000 randomly chosen compounds, which
had previously been subjected to REOS filters, were
selected from commercial sources and subjected to the

Figure 1. Classification of scoring functions evaluated in this
study.

Table 1. Number of Unique Molecules and Conformers for
Each of the Study Sets

target
rot. bond

cutoff
#unique

molecules
number

conformers

P38 7 502 21691
IMPDH 7 400 66761
HIV protease 12 787 112131
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same conformer generation techniques (see Methods
section) resulting in 189 378 conformers.

We further partitioned each of the study sets for each
target into three activity ranges based on inhibition
constants: less than 100 nM, between 100 nM and 1.0
µM, and greater than 1.0 µM, but less than 30.0 µM.
Table 2 shows the number of compounds in each of these
activity ranges for each study system. If we assume that
the randomly chosen commercial compounds are “inac-
tive”, then the basic paradigm for this study is described
by docking multiple conformers of the corresponding test
compounds along with multiple conformers of the 10 000
random compounds into each target. We then ask to
what extent can we correctly identify the active com-
pounds in a given activity range (i.e., from the 10 000
random inactive compounds + active test compounds)
using various combinations of one, two, or three scoring
functions? As mentioned above, we use an initial scoring
function for each docking method. We then save the best
docked orientation of only the best scoring conformer
of each molecule and then rescore that configuration
with the other twelve scoring functions. Scheme 1 shows
the basic flow of this study.

Methods
Conformer Generation. Conformers were generated using

SKIZMO40 in a gas-phase calculation in which duplicates
(including symmetry-related duplicates) were removed (within
0.5 Å RMSD) after conformer generation. Conformers were
then subjected to energy minimization in BATCHMIN41 using
the MMFF force field with the GB/SA continuum solvation
model42 to a derivative convergence of 0.01 kJ/Å/mol, if
obtainable within 1000 steps of conjugate gradient minimiza-
tion. All conformers within 6.0 kcal/mol of the lowest energy
conformer were retained and duplicates were again removed
from the minimized set of conformers.

DOCK 4.0.1. Docking spheres were generated from crystal-
lographic nonhydrogen atom positions of inhibitor atoms
derived from the appropriate cocomplexes. Four sphere types
were employed (donor, acceptor, polar, hydrophobic) and
critical cluster spheres were assigned to at least one key
hydrogen bonding position: p38 (45 spheres total from two
crystallographic complexes; 10 typed spheres, 1 critical cluster
sphere), IMPDH (45 spheres total from two crystallographic
complexes; 6 typed spheres, 2 critical cluster spheres), HIV
protease (35 spheres total from one crystallographic complex;
6 typed spheres, 2 critical cluster spheres). Energy scoring
employing rigid-body simplex minimization was utilized as the
primary scoring function. Automated matching was used
allowing up to 500 orientations per conformer to be examined.
Gasteiger-Marsili43 charges were loaded for all conformers by
BABEL44 for the calculation of the electrostatic component of
the energy scores. Docking grids were generated by the grid
utility program within the DOCK 4.0.1 distribution using
default values. The box dimensions used to calculate the grids
were: p38 (22.8 × 24.3 × 23.2), IMPDH (27.6 × 20.1 × 18.8),
HIV protease (23.0 × 21.7 × 29.5).

GAMBLER. Docking was also carried out using an inter-
nally developed genetic algorithm based docking program
known as GAMBLER (Genetic Algorithm Multiprocessor Box-
Oriented Ligand Enzyme Relocator). The GAMBLER program
follows a model utilized in a number of previously developed
programs.27,45-47 GAMBLER begins with a random population
of chromosomes that encode translation and rotation matrices.
Each chromosome in this random population is evaluated by
applying the translation and rotation matrices and positioning
the ligand in the active site. Each chromosome is then assigned
a fitness score according to the value calculated by the scoring
function. High scoring chromosomes are combined to produce
a new population in an operation known as crossover. To
maintain diversity in the population and allow ligands to
explore new regions of space, random mutations are also
performed on a percentage of the population. The docking
region is defined by a rectilinear box. Sampling efficiency is
increased by initially subdividing the active site into eight sub-
boxes and searching each sub-box.45 The highest scoring
chromosomes from the sub-boxes are then used to form the
initial population. The initial coarse search performed in each
sub-box utilized a population size of 250 for 12 generations.
From the total set of 3000 solutions generated, the best 250
were selected and searched further for 100 generations. The
PLP function was used as the primary scoring function to
determine which configuration would be saved for rescoring.

Prior to docking either the appropriate test compounds or

Scheme 1

Table 2. Number of Compounds in Each of Three Activity
Ranges for Each Target

target <100 nM 100 nM - 1.0 µM 1.0-30.0 µM

P38 126 119 256
IMPDH 172 137 91
HIV protease 275 146 360
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randomly selected commercial compounds, control docking
calculations were performed to ensure that the original
crystallographic complexes could be reproduced with the
docking methods/primary scoring functions employed. For
DOCK (using site points selected from the same crystal-
lographic complex ligand nonhydrogen atoms), all three com-
plexes could be reproduced to within 0.5 Å rmsd of the
experimental complex while for GAMBLER (with no site
points), all three experimental complexes could be reproduced
to within 1.0 Å rmsd.

Scoring Function Details. The implementation of the
functions came from the published work (Figure 1). Only
details specifically pertaining to this study are discussed: due
to instabilities in the simplex minimizations on FLOG grids,
we performed each simplex 10 times and report the median
values of the 10 calculations. Nonbonded interaction energies
calculated with MMFF from BATCHMIN were implemented
through the use of Perl48 scripts. Conjugate gradient minimi-
zation proceeded for 250 steps keeping the protein atoms
completely immobile. Strain energy calculations also utilized
MMFF/BATCHMIN from Perl scripts and were carried out by
an initial restrained minimization to the docked geometry
(half-width of flat bottom restraint ) 0.5 Å, force constant )
500 kcal/mol/Å2) to convergence (0.01 kJ/Å/mol) followed by
removal of the constraints and full minimization until con-
vergence (0.01 kJ/Å/mol) into the closest local minimum. PLP
scores reported in all figures are the result of rescoring against
the PLP grids with simplex minimization (the initial GAM-
BLER dockings used PLP without minimization as a primary
scoring function). ChemScore was implemented as a continu-
ous function, not yet implemented on a grid. For the Poisson-
Boltzmann calculations we employed MMFF charges and radii
from GRASP.49,50 Volume overlap calculations were performed
relative to the original crystallographic ligand and were
implemented in a grid-based occupancy approach.

Results and Discussion

Although the focus of this study is to determine the
utility of combining scoring functions in a consensus
approach, it is instructive to evaluate the individual
performance of the functions considered. In this context,
performance is defined as the percent active compounds
returned by the docking experiment as we evaluate
successively more and more of all top scoring compounds
(i.e., actives and inactives). Figure 2, A-D, illustrate
the performance of each scoring function for each of the
three activity ranges against each of the three study
systems. In each case, the score for a given molecule is
assigned based on that of its highest scoring conforma-
tion. Figure 2, A, C, and D, represent the results with
DOCK for p38, IMPDH, and HIV protease, respectively,
while Figure 2B shows the GAMBLER results for p38.
For each of these plots, the x-axis denotes the top
thousand scoring molecules (approximately 10%) con-
sidered for a given function including both test com-
pounds and randomly chosen (inactive) commercial
compounds, while the y-axis denotes the percentage of
“active” test compounds correctly identified in that
activity range. In each figure, the top panel represents
the nanomolar compounds, the middle panel represents
the 100 nM compounds and the bottom panel represents
the micromolar compounds.

Figure 2A shows that some of the functions are quite
effective at identifying the nanomolar p38 compounds
relative to the presumed inactive commercial com-
pounds. This is reassuring, but not impressive since, in
practice, it is extremely rare to find nanomolar com-
pounds in screening databases of commercially available
compounds; most high throughput screening endeavors

identify mainly micromolar compounds.51 The better
performing functions in this example include Chem-
Score, DOCK energy score, FLOG, PLP, and the SCORE
function. Typically, we find 50% of the nanomolar hits
in the top 5-10% of the total compounds considered (i.e.,
actives + random). It is interesting to note that the plot
plateaus at less than one hundred percent illustrating
the general limitations in the docking and scoring
functions examined in this study. The middle panel of
Figure 2A, representing the 100 nM compounds, shows
a similar relative ordering of the same good performing
functions, but the absolute number of actives correctly
identified is reduced, overall. The bottom panel of Figure
2A shows a marked compression of the function perfor-
mance as would be expected for micromolar compounds,
but it is once again interesting to note that the same
functions are outperforming the other functions, al-
though in this case volume overlap performs reasonably
well. The GAMBLER docking/rescoring for the p38
system (Figure 2B) is quite similar in function perfor-
mance to those produced by DOCK and the same good
performers (i.e., ChemScore, DOCK energy, PLP, and
FLOG) appear to be maintained. In this case, the DOCK
chemical score also appears to perform reasonably well
along with the SCORE function. In general, since the
results for DOCK and GAMBLER are quite similar, the
GAMBLER results for IMPDH and HIV protease are
not shown. It is encouraging that in the GAMBLER
dockings a different primary scoring function was used,
but upon rescoring the same good performing functions
are consistent with those observed with DOCK.

For the IMPDH system (Figure 2C) we see an
enhanced ability to correctly identify active compounds
relative to the more difficult p38 case in which larger
changes in protein conformation are observed upon
binding different inhibitor classes. The best performing
functions are, again, the ChemScore function, DOCK
energy score, and PLP. The DOCK contact score also
performs reasonably well in this system. As previously
noted for p38, similar trends are observed for the
nanomolar and 100 nM compounds. For the micromolar
compounds, we once again see a reduced performance,
but with the ChemScore function, DOCK energy score,
and PLP doing well. In this case, the Böhm function
and volume overlap also appear to perform reasonably
well. Visual inspection of docked structures suggests
that the exceptional performance of the top scoring
functions in this case is overestimated (i.e., that some
incorrectly docked IMPDH inhibitors are scoring better
than they should).

In the case of HIV protease (Figure 2D), the functions
best able to pull out the correct active compounds from
inactive compounds are: ChemScore, DOCK energy
score, PLP, and DOCK contact score. This trend is
upheld across the three activity ranges and shows good
performance in the micromolar range as well. Visual
inspection of docked structures in this instance supports
that the majority of docked compounds are correctly
docked and that the functions are performing well.
However, there are several factors influencing the good
results we see in this case. First, in the case of the
exceptional ChemScore performance across the three
activity ranges, we must not forget that several HIV
protease inhibitor complexes were included in the
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training set for derivation of the ChemScore function.
Additionally, HIV protease inhibitors tend to be larger
molecules and even in the case of micromolar inhibitors
can only bind in a limited number of acceptable binding
modes. Finally, the torsion library we used to generate
conformers included many examples of HIVprotease
inhibitors. This allowed us to generate conformations
that are very close to the “correct” conformations for
these compounds.

The above analysis of single function performance
identified three functions that performed well across all
three targets and activity ranges: ChemScore, DOCK
energy score, and PLP. Although we have exhaustively
attempted all possible combinations of two, three, and
four functions in a consensus approach, we will only
present the results of combining the three most consis-
tent performers denoted above. Figure 3 shows the

consensus scoring results for all three test systems. In
Figure 3, the x-axis indicates the function or combined
functions of interest. The y-axis denotes the number of
compounds common to one or more lists (functions) of
the best scorers. We have chosen to present the data
for depth 300 (i.e., the top 300 molecules for each
function) as a conservative slice through the data. Thus,
for any single function, the total list size (bar height)
will be 300, but when the intersection of two or three
functions is performed, the combined list size (bar
height) will be less than 300 since it is unlikely that
the lists will be identical. In the previous analysis of
single function performance (Figure 2), it was observed
that at least 50% of the active nanomolar compounds
were identified in all three test cases and approximately
50% of active 100 nM compounds were correctly identi-
fied at a depth of 300. The bar graphs are separated

Figure 2. Performance of single scoring functions. Top panel: <100 nM. Middle panel: 100 nM - 1.0 µΜ. Bottom panel: 1.0 µM
-30.0 µM. The x-axis shows the cumulative rank for the top one thousand scoring ligands considered for a given function. This
includes both test compounds and randomly chosen commercial compounds. The y-axis gives the cumulative percentage of
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into three sections based on the three activity ranges
with the labels “nM” for the compounds possessing less
than 100 nM enzyme inhibitory activity; “100nM” for
the compounds with activity between 100 nM and 1.0
µM; “µM” for compounds with inhibitory activity greater
than 1.0 µM, but less than 30.0 µM. The total height of
each bar (including both light blue and maroon sections)
represents the number of total compounds (including
active and inactive compounds common to the list(s)).
The light blue portion of each bar is the number of active
compounds common to the list(s) under consideration,
while the maroon portion of the bar is the number of
inactive random commercial compounds common to
each list. This defines the number of false positives that
would have been screened in each situation. The num-
bers in parentheses next to the “nM”, “100nM”, and

“µM” labels are the number of active compounds that
could have been found in that activity range. Of course,
when one takes the intersection of two or more lists,
the size of the intersected list will be smaller than each
of the original lists unless they are identical.

Figure 3A are the results of p38 with DOCK. Recall,
that p38 represents the most difficult example in this
study. The most striking observation about this bar
graph is the dramatic reduction in the number of false
positives identified when functions are combined. This
is apparent in simply proceeding from one to two
functions. This graph clearly shows that without this
approach one would spend a great deal of time and
energy screening inactive compounds. Although this is
accepted in most screening groups, it is highly inefficient
especially in the context of a directed screening philoso-

active test compounds correctly identified: yi ) 100 × (number of active test molecules retrieved among the top i scoring molecules/
total number of test molecules). A: DOCK results for p38. B: GAMBLER results for p38. C: DOCK results for IMPDH. D: DOCK
results for HIV protease.
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phy. Figure 3A illustrates that combining functions not
only reduces the number of false positives one would
have otherwise screened, but that the total number of
compounds screened could have been reduced, thus
leading to an overall enrichment in the screening
process. For the following discussion, we find it useful
to define two terms: the “enriched hit-rate” is the
number of correctly identified active compounds relative
to the reduced list size produced by consensus scoring;
the “raw hit-rate” would be the number of correctly
identified active compounds relative to the total number
of actives that could have been found in that activity
range. In this instance, we would have achieved an
enriched hit-rate of 18% (7 actives out of 38 total) for
micromolar compounds by combining all three functions
and only screening the 38 compounds common to all
three lists (functions). The raw hit-rate in this case
would be 3% (based on all 256 micromolar compounds).
For the combinations of two functions, the enriched hit-
rates would have varied from 11 to 22%, while the raw
hit-rates would have varied from 3 to 6%. Of course,
this approach did even better for the nanomolar and 100
nM compounds, but this is of lesser interest in practical
terms.

For the case of GAMBLER applied to the same p38
problem (Figure 3B), we see a similar trend. Once again,
we note the dramatic reduction in false positives in
going from a single function to two or three functions.
In this case, the absolute number of correctly identified
actives is even higher; for micromolar compounds, we
see an enriched hit rate of 29% for the combination of
all three functions relative to a raw hit-rate of 9% for
the same three functions. For all combinations of two
functions, we see enriched hit-rates between 19 and 23%
and raw hit rates between 9 and 11% for the same
functions. Figure 3, C and D, show the same reduction
in false positives and significant enriched hit-rates
relative to raw hit-rates for IMPDH and HIV protease
suggesting the generalizability of the consensus ap-
proach.

Conclusions
The most striking and useful result from this work is

that consensus scoring shows much promise as a valu-
able method for obtaining consistent hit-rates across
diverse targets, while reducing the number of false
positives screened. This is imperative for our screening
philosophy in which docking calculations provide only
a relatively small number of compounds selected for
screening purposes. The ChemScore, PLP, and DOCK
energy functions have performed consistently well in
this study both singly and in combination; it should
come as no surprise that these functions all involved
simplex minimization during the rescoring process. It
has been shown 52 that simplex minimization can
consistently improve both the identification of correctly
docked orientations and associated improved scores.
However, the lack of improvement observed when all

degrees of freedom in the ligand were allowed to relax
further in the post-docking MMFF minimizations sug-
gests that even slight variations from correctly docked
structures are overpenalized by the sensitivity of this
method. The best performing functions in this study also
share the feature of possessing relatively smooth po-
tential surfaces with few dramatic spikes.

Some of the other functions that did not perform well
in the study can be rationalized. For example, one
should not expect that the Poisson-Boltzmann binding
energies be very informative by themselves. Although
this approach describes the Coulombic and desolvation
components of binding accurately, it does not provide
information on the essential hydrophobic aspects of
binding. It is likely that when combined with appropri-
ate descriptions of interaction surface shape comple-
mentarily, excluded surface area, and an estimation of
conformational entropy, the PB method will have utility
in the ranking of large numbers of compounds. As with
MMFF, it might also be expected that the sensitivity of
the PB method would overpenalize docked orientations
that are close to “correct” but not perfect.

We are also not surprised that the version of the
Böhm function used in this study did not perform well.
This function was the first generally used empirical
function and has had utility in other studies. In our
experience, the lack of a repulsive term in this version
was the limiting factor. We would expect that the most
recently published version of this function which does
account for repulsive interactions53 would perform well
on the study systems evaluated in this study. The fact
that Strain energy did not perform well in this study is
somewhat misleading. Since these conformers were
already in or close to local minima, the inclusion of this
measurement is largely uninformative. Certainly, we
and others 39,54,55 have found the accurate calculation
of intramolecular strain to be essential in the drug
design process.

On the basis of these results, we estimate that
consensus scoring as presented in this work should
consistently provide hit-rates between 5 and 10% for
enzymes with reasonably buried binding sites. We do
not believe, however, that this approach will be gener-
ally useful for the quantitative prediction of Ki for small
sets of compounds. The only potential disadvantage we
can envision regarding consensus scoring is that it may
not perform as well as any specific function in a specific
instance, since the intersection of two nonidentical lists
is, by definition, smaller than the individual lists.
However, since one never knows which function might
be optimal upfront, we believe the consistency and
efficiency gained by consensus scoring outweighs any
potential limitation. Docking errors place an upper limit
on the performance of consensus scoring as they do in
any computational docking/scoring experiment. The
limited data we have suggests that the choice of primary
scoring function (i.e., DOCK energy score for DOCK;
PLP with GAMBLER) has minimal effects on the

Figure 3. Consensus scoring. The x-axis describes the function or functions of interest (plp ) Piecewise Linear Potential, csco
) ChemScore, nrg ) DOCK energy score). The y-axis describes the number of compounds common to the top scoring compounds
of each function. An arbitrary depth of 300 for the compounds common to any function or functions is shown. The bar graphs are
separated into three sections based on the three activity ranges: “nM”, < 100 nM; “100 nM”, 100 nM - 1.0 µΜ; “µM”, 1.0 µM
-30.0 µM. The light blue portion of each bar is the number of active compounds common to the function(s) considered, the maroon
portion of the bar is the number of inactive random commercial compounds common to each list or lists.
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rescoring/consensus results. However, to be rigorous
would require the ability to evaluate each scoring
function as a primary function followed by rescoring.
We have simply chosen two well-known scoring func-
tions that have shown reliable performance in the past.
It is clear that there are also other recently published
scoring functions 56 that would be useful to consider in
the approach presented here. Additionally, it would be
interesting in future studies to examine whether the
inclusion of solvation during the docking process might
improve the results. Recent work57 suggests that this
might contribute to even fewer false positives than we
have observed.

An issue not discussed in the present study is that of
combining these same scoring functions in a more
statistically rigorous manner (i.e., multiple linear re-
gression). It is apparent that when applying the con-
sensus scoring approach as presented here, there will
be a high degree of correlation among the better
performing functions. This amount of correlation is
acceptable in the context of identifying micromolar leads
from screening databases; however, this is not optimal
in terms of deriving more quantitative and predictive
models. We are presently attempting to build models
that not only pick out the commonalties among the
scoring functions, but also the information enriching
differences between them which may enhance predic-
tivity.6

We believe that given the inability of current scoring
functions to capture the essential physics of ligand
binding in a complete fashion, the consensus approach
is a reasonable compromise. The consensus approach
to scoring when combined with intelligent filtering (e.g.,
REOS) should provide a general improvement in dock-
ing-based selection of both commercially available com-
pounds and combinatorial libraries in an attempt to
identify and optimize leads.
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